Applications of artificial intelligence in professional sports
Fecha de la noticia: 04-07-2025

Sport has always been characterized by generating a lot of data, statistics, graphs... But accumulating figures is not enough. It is necessary to analyze the data, draw conclusions and make decisions based on it. The advantages of sharing data in this sector go beyond mere sports, having a positive impact on health and the economic sphere. they go beyond mere sports, having a positive impact on health and the economic sphere.
Artificial intelligence (AI) has also reached the professional sports sector and its ability to process huge amounts of data has opened the door to making the most of the potential of all that information. Manchester City, one of the best-known football clubs in the British Premier League, was one of the pioneers in using artificial intelligence to improve its sporting performance: it uses AI algorithms for the selection of new talent and has collaborated in the development of WaitTime, an artificial intelligence platform that manages the attendance of crowds in large sports and leisure venues. In Spain, Real Madrid, for example, incorporated the use of artificial intelligence a few years ago and promotes forums on the impact of AI on sport.
Artificial intelligence systems analyze extensive volumes of data collected during training and competitions, and are able to provide detailed evaluations on the effectiveness of strategies and optimization opportunities. In addition, it is possible to develop alerts on injury risks, allowing prevention measures to be established, or to create personalized training plans that are automatically adapted to each athlete according to their individual needs. These tools have completely changed contemporary high-level sports preparation. In this post we are going to review some of these use cases.
From simple observation to complete data management to optimize results
Traditional methods of sports evaluation have evolved into highly specialized technological systems. Artificial intelligence and machine learning tools process massive volumes of information during training and competitions, converting statistics, biometric data and audiovisual content into strategic insights for the management of athletes' preparation and health.
Real-time performance analysis systems are one of the most established implementations in the sports sector. To collect this data, it is common to see athletes training with bands or vests that monitor different parameters in real time. Both these and other devices and sensors record movements, speeds and biometric data. Heart rate, speed or acceleration are some of the most common data. AI algorithms process this information, generating immediate results that help optimize personalized training programs for each athlete and tactical adaptations, identifying patterns to locate areas for improvement.
In this sense, sports artificial intelligence platforms evaluate both individual performance and collective dynamics in the case of team sports. To evaluate the tactical area, different types of data are analyzed according to the sports modality. In endurance disciplines, speed, distance, rhythm or power are examined, while in team sports data on the position of the players or the accuracy of passes or shots are especially relevant.
Another advance is AI cameras, which allow you to follow the trajectory of players on the field and the movements of different elements, such as the ball in ball sports. These systems generate a multitude of data on positions, movements and patterns of play. The analysis of these historical data sets allows us to identify strategic strengths and vulnerabilities both our own and those of our opponents. This helps to generate different tactical options and improve decision-making before a competition.
Health and well-being of athletes
Sports injury prevention systems analyze historical data and metrics in real-time. Its algorithms identify injury risk patterns, allowing personalized preventive measures to be taken for each athlete. In the case of football, teams such as Manchester United, Liverpool, Valencia CF and Getafe CF have been implementing these technologies for several years.
In addition to the data we have seen above, sports monitoring platforms also record physiological variables continuously: heart rate, sleep patterns, muscle fatigue and movement biomechanics. Wearable devices with artificial intelligence capabilities detect indicators of fatigue, imbalances, or physical stress that precede injuries. With this data, the algorithms predict patterns that detect risks and make it easier to act preventively, adjusting training or developing specific recovery programs before an injury occurs. In this way, training loads, rep volume, intensity and recovery periods can be calibrated according to individual profiles. This predictive maintenance for athletes is especially relevant for teams and clubs in which athletes are not only sporting assets, but also economic ones. In addition, these systems also optimise sports rehabilitation processes, reducing recovery times in muscle injuries by up to 30% and providing predictions on the risk of relapse.
While not foolproof, the data indicates that these platforms predict approximately 50% of injuries during sports seasons, although they cannot predict when they will occur. The application of AI to healthcare in sport thus contributes to the extension of professional sports careers, facilitating optimal performance and the athlete's athletic well-being in the long term.
Improving the audience experience
Artificial intelligence is also revolutionizing the way fans enjoy sport, both in stadiums and at home. Thanks to natural language processing (NLP) systems, viewers can follow comments and subtitles in real time, facilitating access for people with hearing impairments or speakers of other languages. Manchester City has recently incorporated this technology for the generation of real-time subtitles on the screens of its stadium. These applications have also reached other sports disciplines: IBM Watson has developed a functionality that allows Wimbledon fans to watch the videos with highlighted commentary and AI-generated subtitles.
In addition, AI optimises the management of large capacities through sensors and predictive algorithms, speeding up access, improving security and customising services such as seat locations. Even in broadcasts, AI-powered tools offer instant statistics, automated highlights, and smart cameras that follow the action without human intervention, making the experience more immersive and dynamic. The NBA uses Second Spectrum, a system that combines cameras with AI to analyze player movements and create visualizations, such as passing routes or shot probabilities. Other sports, such as golf or Formula 1, also use similar tools that enhance the fan experience.
Data privacy and other challenges
The application of AI in sport also poses significant ethical challenges. The collection and analysis of biometric information raises doubts about the security and protection of athletes' personal data, so it is necessary to establish protocols that guarantee the management of consent, as well as the ownership of such data.
Equity is another concern, as the application of artificial intelligence gives competitive advantages to teams and organizations with greater economic resources, which can contribute to perpetuating inequalities.
Despite these challenges, artificial intelligence has radically transformed the professional sports landscape. The future of sport seems to be linked to the evolution of this technology. Its application promises to continue to elevate athlete performance and the public experience, although some challenges need to be overcome.